Application of Powder Coating over Bare Steel Product and Hardware Surfaces for Powder Coating

1. Scope

1.1 This practice describes methods of preparing surfaces of bare steel for powder coating and the application of powder coating materials.

1.1.1 Powder coating is a dry finishing process using finely ground particles of pigment and resin, electrostatically charged, and sprayed onto a part to be coated. The parts are electrically grounded so that the charged particles project at them adhere to the surface and are held there until melted and fused into a smooth coating in the curing oven. Powder coatings when properly applied, have been found to provide uniform, durable, high quality finish with superior film integrity. Because they contain little or no volatile emissions, they are fully regulatory compliant.

1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the application of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

B 117 - 07a Standard Practice for Operating Salt Spray (Fog) Apparatus
D 3363-05 Standard Test Method for Film Hardness by Pencil Test
D 3359 - 08 Standard Test Methods for Measuring Adhesion by Tape Test
E 376 Practice for Measuring Coating Thickness by Magnetic-Field or Eddy-Current (Electromagnetic) Test Methods

2.2 Society for Protective Coatings Specifications:

Surface Preparation Specification No. 1 Solvent Cleaning
Surface Preparation Specification No. 2 Hand Tool Cleaning
Surface Preparation Specification No. 3 Power Tool Cleaning
Surface Preparation Specification No. 6 Blast Cleaning

3. Summary of Practices

3.1 This practice describes the methods of preparation and application of powder coating. The key to achieving good adhesion between powder coatings and bare steel is surface preparation. The surface must be entirely free from iron oxides (rust) prior to powder coating. Any rust, or other metal oxides, that remain on the surface of the product can potentially retain air or moisture. Upon heating during the curing stages of the powder application, the oxides may release water vapor or air, which can expand and penetrate the powder coating, causing blisters or voids.

3.1.1 The significant problem associated with the use of polyester powders on bare steel products is the adhesion of the coating to the bare steel surface caused by rust. However, the oxide layer must be removed to provide a pure metal surface for proper coating bond. This is a common problem in applying coatings on to bare steel surfaces whether paint or powder coating. The proper preparation of the bare steel substrate and application of the coating system can develop the adhesion and coverage necessary to overcome this problem and result a satisfactory service life.

3.2 Variations in surface preparation produce end conditions that differ; hence they do not necessarily yield identical results when coatings are subsequently applied. Service conditions will dictate the type of surface preparation to be selected, although the quality produced by any individual process may vary with different compositions of the bare steel surface.

1 For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

2 Available from Society for Protective Coatings (SSPC), 40 24th St., 6th Floor, Pittsburgh, PA 15222-4656.
4. Significance and Use

4.1 The proper preparation and application of powder coating is dependent on the following steps: preparation, chemical pretreatment, thermal pretreatment, application of powder coating material, and curing.

5. Processes for Preparing Bare steel for Powder Coating

5.1 The key to preparing the substrate is removing the oxide layer, providing a pure metal surface for the coating to which to bond. All metal surfaces and welds to be powder coated shall be thoroughly cleaned of rust, mill scale, slag, dirt, oil or grease and other foreign substances. Iron oxide formation is often not visible to the naked eye; therefore, in any atmosphere, powder coating should be started as soon as possible after surface preparation.

5.1.1 Surface Cleaning — Bare steel surfaces must be clean and free of oil and grease before they are powder coated. This can be accomplished by power washing the article to remove surface contaminants.

5.1.2 Solvent cleaning — Solvent cleaning may be performed for the removal of dirt, oil, grease, drawing and cutting compounds, and detrimental weld fume deposits by the use of solvents and other materials. Typical cleaning solvents, such as mineral spirits or high-flash naphtha, can be used to remove oil and grease. The procedure to be used is as specified in SSPC Surface Preparation Specification 2 or 3.

Note 1 — Caution: These rags or brushes should be cleaned or recycled often since oil can accumulate on their surfaces and be transferred back to the part. Small parts may be dipped or cleaned in ultrasonic baths of solvents. After cleaning, rinse thoroughly in hot water or water under pressure. Allow to dry completely before proceeding.

5.1.3 Hand or Power Tool Cleaning — Hand or power tool cleaning may be used to clean light deposits of rust by products as specified in SSPC Surface Preparation Specification 2 or 3.

5.1.4 Blast Cleaning — For the removal of all dirt, grease, rust scale, foreign material and mill scale, rust, old paint and slag to the extent that staining is limited to light shadows, slight steaks, or minor discolorations caused by stains of rust, stains of mill scale, or stains of previously applied paint. Bare steel surfaces have a layer of iron oxide that must be removed before powder coating will adhere to the bare steel. Blast cleaning shall be performed in accordance with SSPC Surface Preparation Specification 6. After blasting operations are completed, all surfaces shall be cleaned of blasting products and other residue by the use of compressed air or vacuumed.

6.0 Chemical pretreatment of Steel Prior to Powder Coating

6.1 Chemical Treatment — Chemical pretreatment is necessary to promote powder coating adhesion by providing a proper substrate on the steel surface to passivate the steel surface by providing a conversion coating to receive the powder coating material. Presently, the most common method of chemical pretreatment is to use a phosphoric acid to provide the conversion coating. This conversion-coating process consists of reacting the steel surface in a phosphate solution containing oxidizing agents and other salts for accelerating the coating action. The steel surface is converted to a crystalline phosphate coating of the proper texture to inhibit corrosion and increase the adherance and durability of the powder coating. This process may be applied by immersion, spray, or soft bristle brush application. After a time period of 3 to 6 min, the surface should be washed with clean water and allowed to completely dry before application of the powder coating system. Powder coating should take place soon after treatment to avoid pick up of surface contaminants.

6.2 Pretreatment consists of three main stages with rinses between each stage. These are: cleaning, creation of a conversion coating, and sealing.

6.2.1 Subsequent to the preparation process described in Section 5, the surface must receive additional cleaning to achieve maximum performance. The cleaning stage is accomplished by applying a surface active agent to loosen the bond between any residual soil-surface bond by reducing surface tension.

6.2.1.1 Subsequent to application of the cleaning agent, the surface is rinsed with a water rinse to neutralize the surface.

6.2.2 After the first rinse, an agent to promote a proper conversion coating, usually a phosphoric acid is applied. These agents may include iron, zinc, zirconium, or other material. The phosphate coating promotes the bonding of the powder coating to the steel. When the clean metal comes in contact with the slightly acidic phosphating solution, pickling occurs. This results in a reduction of the acid concentration at the liquid/metal interface, iron is dissolved, hydrogen evolved, and the phosphate coating is deposited. The coating weight should be in the range of from 35 to 70 mg/ft². Coating weights for other solutions will be determined by the phosphating agent supplier.

6.2.3 After phosphatizing, the surface is again rinsed to flush any remaining phosphate solution, stop the phosphatizing process, and cleanse the surface for final seal rinsing.

6.2.4 The final pretreatment stage is seal rinsing. The purpose of the sealing rinse is to enhance the coating’s resistance to surface corrosion and paint adhesion. The sealing rinse consists of a sealing agent and water. As a rule of thumb, water with...
Application of Powder Coating over Aluminum Product and Hardware Surfaces for
Powder Coating

hardness above the moderately high range (i.e. greater than 250 ppm as CaCO₃) should not be used as make up water for the final rinse. Likewise water with a level of combined chlorides and sulfates greater than 100 ppm should not be used. In these cases, demineralized water should be substituted. The most common methods for demineralized water are ion exchange or reverse osmosis.

7.0 Application of Powder Coating Material

7.1 Powder Coat Material- Thermosetting powder coatings will chemically react during baking to form a polymer network which is more resistant to coating breakdown. In addition, thermosetting powder coatings will not remelt after cooling when heat is re-applied. There is a wide variety of powder coating materials in production. The powder coating material manufacturer shall supply a Product Data Sheet specifying application and curing techniques. Also, if the piece in use will be subject to ultraviolet radiation, a super durable formula shall be used to preserve color integrity.

7.2 Powder Application- Polyester powder is applied through electrostatic application guns. These can be either using the corona charging method operating at voltages from 50 kV to 100 kV or tribostatic (frictional) charging. The powder particles acquire an electrostatic charge as they pass through the gun transported by low pressure, dehumidified air at a discharge rate of 100-600 g/min, depending on the application. The work being coated is grounded and the charged powder particles are attracted to the surface of the work, where they electrostatically adhere in a uniform layer typically 4 to 10 mils (100-250 microns) thick. (Greater thicknesses, up to 30 mils (750 microns) can be obtained using fluidized bed techniques.) The location and motion of the guns, the transport air pressure, and the types of nozzles used will determine the uniformity of distribution of powder. Complex shapes generally require localized hand spraying to ensure that powder is adequately deposited in all necessary areas on the work.

7.3 Polymer Performance- Due to the wide variety of powder coating materials that are available, depending on the type of powder coating material used, the application process should be tailored to the specific powder requirements recommended by the manufacturer. Polyester powders are available in a variety of grades and their performance is generally reflected in the cost of the powders. The highest grades of powders designed for exterior use have excellent UV resistance and as a result have very good gloss and color retention in atmospheric exposure conditions. The higher grades of polyester powders can be expected to pass 1000 hour Salt Spray (ASTM B 117). TCIG (triglycidyl isocyanurate) containing powders provide the best long-term durability. Polyester powders, while performing well in normal atmospheric exposure conditions, may not perform satisfactorily in chemical environments where epoxy powders may be more appropriate. As a rule, the polyester powders should be considered for high performance architectural applications rather than industrial exposures. Epoxies are unsuitable for architectural applications because of their chalking tendencies when exposed to UV radiation.

7.3.1 Like most applied coatings, failures associated with polyester powder coatings that have otherwise been correctly specified are related to the integrity of application. Coating integrity of polyester powder coated steel surfaces is most often affected by inadequate powder coverage in the cured polyester film. Problems associated with powder coverage are a function of the design of the product being coated and the techniques and equipment used to apply the powder to ensure adequate penetration of the charged powder particles onto all surfaces of the work. It is very difficult for any applied coating less than 4 mils (100 microns) in thickness, applied in a single coat, to be free of holidays in the coating. Therefore, the powder shall be applied in multiple coats. The first coat shall have a thickness of 1.5 to 3 mils. Each intermediate coat shall be partially cured at a temperature of 350°F to insure adhesion. Subsequent coats shall be then applied in 1.5 to 3 mil increments to bring the specimen to its final (cured) thickness as required by the customer specification. In no case will the final (cured) thickness be less than 5 mils.

8.0 Curing

8.1 Powder coatings cross link at specific temperatures. In general, thermoplastic resins tend to be of higher molecular weight and require relatively higher temperatures to cure than thermosetting resins. However, the specific temperature and cure schedule as provided by the manufacturer shall be followed as these curing parameters will vary among manufacturers.

8.2 The curing oven shall be capable of attaining temperatures required by the powder coating material supplier as defined by the manufacturer’s Product Data Sheet. This is typically 350 to 450°F (175 to 230°C). The oven shall sustain the temperature for a sufficient time to insure the coating material is cured as per manufacturer’s specifications.

8.3 The cure oven temperature should be operated as low as possible. Best results are achieved with lower oven temperatures and longer times as opposed to higher temperatures with shorter times. The lower temperatures will result in longer curing times that will lead to the resealing of any craters that may have formed.

8.4 Polyester powders are thermosetting resins that cross link at a specific temperature. For these powders to be fully cured, this temperature must be maintained until the reaction is complete. Elevating the curing temperature above the minimum level
will shorten the curing time at the risk of burning the powder. A typical polyester powder will cure in 10 minutes at a metal temperature of 390°F (200°C). At 375°F (190°C), curing time must be extended to 15 minutes, or may be shortened to 8 minutes at 410°F (210°C).

9.0 Inspection

9.1 The power coating shall, at a minimum, meet the following requirements:

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Standard</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct impact</td>
<td>ASTM D 2794</td>
<td>160 in./lb (9.0 m/kg)</td>
</tr>
<tr>
<td>Reverse impact</td>
<td>ASTM D 2794</td>
<td>160 in./lb (9.0 m/kg)</td>
</tr>
<tr>
<td>Pencil hardness (scratch/gouge)</td>
<td>ASTM D 3363</td>
<td>2H</td>
</tr>
<tr>
<td>Flexibility (Mandrel test)</td>
<td>ASTM D 522</td>
<td>1/8 in. (3mm)</td>
</tr>
<tr>
<td>Minimum adhesion</td>
<td>ASTM D 3359</td>
<td>5A,5B (100% crosshatch)</td>
</tr>
<tr>
<td>Salt spray</td>
<td>ASTM B 117</td>
<td>+ 1000 hrs < 2mm</td>
</tr>
<tr>
<td>Gloss loss:</td>
<td>AAMA 2604-05</td>
<td>40% @ 5 yrs (S. Florida)</td>
</tr>
<tr>
<td>Color change:</td>
<td>ASTM D2244</td>
<td>≥ ΔΣ 5.0 (Hunter Scale)</td>
</tr>
</tbody>
</table>